首页> 外文OA文献 >Deep Feature Learning with Relative Distance Comparison for Person Re-identification
【2h】

Deep Feature Learning with Relative Distance Comparison for Person Re-identification

机译:基于人的相对距离比较的深度特征学习   重新鉴定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Identifying the same individual across different scenes is an important yetdifficult task in intelligent video surveillance. Its main difficulty lies inhow to preserve similarity of the same person against large appearance andstructure variation while discriminating different individuals. In this paper,we present a scalable distance driven feature learning framework based on thedeep neural network for person re-identification, and demonstrate itseffectiveness to handle the existing challenges. Specifically, given thetraining images with the class labels (person IDs), we first produce a largenumber of triplet units, each of which contains three images, i.e. one personwith a matched reference and a mismatched reference. Treating the units as theinput, we build the convolutional neural network to generate the layeredrepresentations, and follow with the $L2$ distance metric. By means ofparameter optimization, our framework tends to maximize the relative distancebetween the matched pair and the mismatched pair for each triplet unit.Moreover, a nontrivial issue arising with the framework is that the tripletorganization cubically enlarges the number of training triplets, as one imagecan be involved into several triplet units. To overcome this problem, wedevelop an effective triplet generation scheme and an optimized gradientdescent algorithm, making the computational load mainly depends on the numberof original images instead of the number of triplets. On several challengingdatabases, our approach achieves very promising results and outperforms otherstate-of-the-art approaches.
机译:在不同的场景中识别同一个人是智能视频监控中一项重要而又艰巨的任务。它的主要困难在于如何在区分不同个体的同时,保持同一个体的相似性,以防止外观和结构变化较大。在本文中,我们提出了一种基于深度神经网络的可扩展的距离驱动特征学习框架,用于人的重新识别,并证明了其应对现有挑战的有效性。具体来说,给定带有类别标签(人员ID)的训练图像,我们首先生成大量的三元组单元,每个三元组单元包含三幅图像,即一个人具有匹配的参考和不匹配的参考。将单位视为输入,我们构建卷积神经网络以生成分层表示,并遵循$ L2 $距离度量。通过参数优化,我们的框架倾向于使每个三联体单元的匹配对和错配对之间的相对距离最大化。此外,该框架产生的一个重要问题是三联体组织立方增加了训练三联体的数量,因为一张图像可以涉及几个三联体单元。为了克服这个问题,我们开发了有效的三元组生成方案和优化的梯度下降算法,使得计算量主要取决于原始图像的数量而不是三联体的数量。在一些具有挑战性的数据库上,我们的方法取得了非常可喜的结果,并且优于其他最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号